Microstructure and Mechanical Properties of Microwave Sintered ZrO2 Bioceramics with TiO2 Addition

نویسندگان

  • Hsien-Nan Kuo
  • Jyh-Horng Chou
  • Tung-Kuan Liu
چکیده

The microwave sintered zirconia ceramics with 0, 1, 3, and 5 wt% TiO2 addition at a low sintering temperature of 1300°C and a short holding time of 1 hour were investigated. Effect of contents of TiO2 addition on microstructure and mechanical properties of microwave sintered zirconia bioceramics was reported. In the sintered samples, the main phase is monoclinic zirconia (m-ZrO2) phase and minor phase is tetragonal zirconia (t-ZrO2) phase. The grain sizes increased with increasing the TiO2 contents under the sintering temperature of 1300°C. Although the TiO2 phase was not detected in the XRD pattern, Ti and O elements were detected in the EDS analysis. The presence of TiO2 effectively improved grain growth of the ZrO2 ceramics. The Vickers hardness was in the range of 125 to 300 Hv and increased with the increase of TiO2 contents. Sintering temperature dependence on the Vickers hardness was also investigated from 1150°C to 1300°C, showing the increase of Vickers hardness with the increase of the sintering temperature as well as TiO2 addition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INFLUENCE OF MGO ADDITION ON MICROSTRUCTURE AND PROPERTIES OF REACTION SINTERED ALUMINIUM TITANATE

Effect of MgO addition on reaction sintering of aluminium titanate was investigated using equimolar Al2O3 and TiO2 after firing the samples at 1400 C for four hours. Results showed that MgO addition enhanced the sintering process by magnesium aluminates formation, which led to lower porosity and improved densification of the samples. Physical and mechanical properties showed that samples contai...

متن کامل

The Impact of Current Density of Electroplating on Microstructure and Mechanical Properties of Ni-ZrO2-TiO2 Composite Coating

Metallic composite coatings with ceramic particles can be used to improve the mechanical and corrosion properties of steel. In the present research, Ni-ZrO2-TiO2 composite coating was fabricated on AISI 430 stainless steel through the electrodeposition method. The effect of the current density of electroplating (15, 17, 20, and 23 mA.cm-2)was investigated on the...

متن کامل

Effect of ball milling on reactive microwave sintering of MgO-TiO2 System

Abstarct  In this paper, effect of mechanical activation on microwave reactive sintering of MgO - TiO2 system was investigated. Mixtures of MgO and TiO2 were milled at different times. Mixed powders along with 10 h milled powders were chosen for microwave sintering between 1000- 1400⁰C. Results showed that increasing of temperature up to 1400̊C for mixed powders could not give rise to complete f...

متن کامل

Effect of milling time and microwave sintering on microhardness and electrical properties of nano and micro structured cordierite

The purpose of this research is to investigate the mechanical and electrical properties of nano structured cordierite. Nano grain size powders were synthesized through mechanical activation by high-energy ball milling of the starting powders containing 34.86 wt% Al2O3, 51.36 wt% SiO2, and 13.78 wt% MgO. Samples were prepared by conventional and microwave sintering at 1390°C. SEM observations il...

متن کامل

Effect of Composition and MnS Addition on Microstructure and Mechanical Properties of Powder Forged Copper Steel Parts

In this work, the effects of carbon content and manganese sulfide addition on the microstructure and mechanical properties of copper steel parts have been studied. Steel powder mixture containing 2%Cu and different graphite contents with and without MnS additions were compacted, sintered and forged to almost full density. Forged samples, with near theoretical densities, were tested for tensile,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016